Download of papers

Download of posters

TWG3 Papers

  1. Jan Block: Flexible algebraic action on quadratic equations
  2. Maria Chimoni & Demetra Pitta-Pantazi: Connections between algebraic thinking and reasoning processes
  3. Annalisa Cusi & Nicolina A. Malara: Which algebraic learning can a teacher promote when her teaching does not focus on interpretative processes?
  4. Diana Henz, Reinhard Oldenburg & Wolfgang I. Schöllhorn: Does bodily movement enhance mathematical problem solving? Behavioral and neurophysiological evidence
  5. Thomas Janßen & Luis Radford: Solving equations: Gestures, (blameable) hints, and the unsayable matter
  6. Areti Panaoura, Paraskevi Michael-Chrysanthou & Andreas Philippou: The teaching of the concept of function: Definition and problem solving
  7. Juan D. Godino, Teresa Neto, Miguel R. Wilhelmi, Lilia Aké, Silvia Etchegaray, & Aitzol Lasa: Levels of algebraic reasoning in primary and secondary education
  8. AnnMarie H. O’Neil & Helen M. Doerr: Using variation theory to design tasks to support students’ understanding of logarithms
  9. Marios Pittalis, Demetra Pitta-Pantazi, & Constantinos Christou : The development of student’s early number sense
  10. Valentina Postelnicu & Florin Postelnicu: College students' understanding of parameters in algebra
  11. Mark Prendergast & Paraic Treacy: Analysing Ireland’s ‘algebra problem’
  12. Anita Movik Simensen, Anne Berit Fuglestad, & Pauline Vos: How much communication space is there for a low achiever in a heterogeneous group?
  13. Heidi Strømskag: A pattern-based approach to elementary algebra
  14. Gyöngyi Szanyi: The study of the preparation of function-concept using the van Hiele levels
  15. Ulises Xolocotzin & Teresa Rojano: The development and arithmetic foundations of early functional thinking
  16. María de Lourdes Sánchez Ugalde & Ricardo Quintero Zazueta: Acquisition of algebraic concepts through the study of comparison of quantities: Equalities and inequalities

TW3 Posters

  1. Deniz Eroglu & Dilek Tanisli: Windows on students' algebra: describing their habits of mind
  2. David Glassmeyer & Belinda Edwards: Middle grade teachers' thinking of algebraic reasoning in relation to their classrooms
  3. Derek Pilous & David Janda : Prototypes in secondary and university mathematical education
  4. Eudes Libert Mamas Mavoungou & Alejandro S. González-Martín: Developing the notions of variation and covariation through patterns: an institutional analysis of primary school textbooks
  5. Mathias, Norqvist: Creative reasoning more beneficial for cognitively weaker students
  6. Aisling Twohill: Generalising from visual spatial patterns
  7. Unni Wathne: Teachers procedures to introduce algebraic expression in two Norwegian Grade 8 classrooms

© 2014–2015 GUARANT International